
Modern Operating Systems
Fourth Edition

Chapter 1
Introduction

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Components of a Modern Computer (1 of 2)

• One or more processors

• Main memory

• Disks

• Printers

• Keyboard

• Mouse

• Display

• Network interfaces

• I/O devices

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Components of a Modern Computer (2 of 2)

Figure 1-1. Where the operating system fits in.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Operating System as an Extended
Machine

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Operating System as a Resource
Manager

• Top down view
– Provide abstractions to application programs

• Bottom up view
– Manage pieces of complex system

• Alternative view
– Provide orderly, controlled allocation of resources

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

History of Operating Systems

• The first generation (1945-55) vacuum tubes

• The second generation (1955-65) transistors and batch
systems

• The third generation (1965-1980) I Cs and
multiprogramming

• The fourth generation (1980-present) personal computers

• The fifth generation (1990-present) mobile computers

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Transistors and Batch Systems (1 of 3)

Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b) 1401 reads
batch of jobs onto tape.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Transistors and Batch Systems (2 of 3)

Figure 1-3. An early batch system. (c) Operator carries input tape to 7094. (d)7094 does
computing. (e) Operator carries output tape to 1401. (f) 1401 prints output.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Transistors and Batch Systems (3 of 3)

Figure 1-4. Structure of a typical F M S job.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I Cs and Multiprogramming

Figure 1-5. A multiprogramming system with three jobs in memory.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processors (1 of 2)

Figure 1-6. Some of the components of a simple personal computer.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processors (2 of 2)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar C P U.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory (1 of 3)

Figure 1-8. (a) A quad-core chip with a shared L2 cache. (b) A quad-core chip with
separate L2 caches.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory (2 of 3)

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory (3 of 3)

Caching system issues:
1. When to put a new item into the cache.
2. Which cache line to put the new item in.
3. Which item to remove from the cache when a slot is

needed.
4. Where to put a newly evicted item in the larger

memory.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disks

Figure 1-10. Structure of a disk drive.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/O Devices (1 of 2)

Figure 1-11. (a) The steps in starting an I/O device and getting an interrupt.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/O Devices (2 of 2)

Figure 1-11. (b) Interrupt processing involves taking the interrupt, running the interrupt
handler, and returning to the user program.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Buses

Figure 1-12. The structure of a large x86 system

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Operating System Zoo

• Mainframe Operating Systems

• Server Operating Systems

• Multiprocessor Operating Systems

• Personal Computer Operating Systems

• Handheld Computer Operating Systems

• Embedded Operating Systems

• Sensor Node Operating Systems

• Real-Time Operating Systems

• Smart Card Operating Systems

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processes (1 of 2)

• Key concept in all operating systems

• Definition: a program in execution

• Process is associated with an address space

• Also associated with set of resources

• Process can be thought of as a container
– Holds all information needed to run program

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processes (2 of 2)

Figure 1-13. A process tree. Process A created two child processes, B and C. Process B
created three child processes, D, E, and F.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Files (1 of 3)

Figure 1-14. A file system for a university department.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Files (2 of 3)

Figure 1-15. (a) Before mounting, the files on the C D-R O M are not accessible. (b) After
mounting, they are part of the file hierarchy.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Files (3 of 3)

Figure 1-16. Two processes connected by a pipe.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Ontogeny Recapitulates Phylogeny

• Each new “species” of computer
– Goes through same development as “ancestors”

• Consequence of impermanence
– Text often looks at “obsolete” concepts
– Changes in technology may bring them back

• Happens with large memory, protection hardware, disks,
virtual memory

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls (1 of 5)

Figure 1-17. The 11 steps in making the system call read(fd, buffer, nbytes).

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls (2 of 5)

Some of the major POSIX system calls. The return code s is −1 if an error has
occurred. The return codes are as follows: pid is a process id, fd is a file
descriptor, n is a byte count, position is an offset within the file, and seconds
is the elapsed time.

Process Management

Call Description
p i d fork() Create a child process identical

to the parent
p i d waitp i d(pid,
&statloc, options)

Wait for a child to terminate

s execve(name, argv,
environp)

Replace a process' core image

exit(status) Terminate process execution
and return status

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls (3 of 5)

Some of the major P O S I X system calls. The return code s is −1 if an error has
occurred. The return codes are as follows: p i d is a process id, fd is a file
descriptor, n is a byte count, position is an offset within the file, and seconds
is the elapsed time.

File Management

Call Description

fd open(file, how, ...) Open a file for reading, writing, or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

Position = Iseek(fd, offset,
whence)

Move the file pointer

s = stat(name, &buf) Get a file's status information

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls (4 of 5)

Some of the major P O S I X system calls. The return code s is −1 if an
error has occurred. The return codes are as follows: pid is a process
id, fd is a file descriptor, n is a byte count, position is an offset within
the file, and seconds is the elapsed time.

Directory and file system management

Call Description

s = mkdir(name, mode) Open a file for reading, writing, or both

s= rmdir(name) Close an open file

s= link(name1 , name2) Read data from a file into a buffer

s= unlink(name) Write data from a buffer into a file

s= mount(special, name, flag) Move the file pointer

s= umount(special) Get a file's status information

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls (5 of 5)

Some of the major P O S I X system calls. The return code s
is −1 if an error has occurred. The return codes are as
follows: pid is a process id, fd is a file descriptor, n is a
byte count, position is an offset within the file, and
seconds is the elapsed time.

Miscellaneous
Call Description
s = chdir(dirname) Change the working directory

s= chmod(name,mode) Change a file's protection bits

s= kill(pid,signal) Send a signal to a process

s= time(&seconds) Get the elapsed time since Jan. 1, 1970

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for Process Management

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to be
defined as 1.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for File Management

Figure 1-20. Processes have three segments: text, data, and stacks

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for Directory Management (1 of
2)

Figure 1-21. (a) Two directories before linking usr/jim/memo to ast’s directory. (b) The
same directories after linking.s

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for Directory Management (2 of
2)

Figure 1-22. (a) File system before the mount. (b) File system after the mount.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Windows Win32 A P I (1 of 2)

The Win32 A P I calls that roughly correspond to the U N I X
calls of Fig. 1-18.

UNIX Win32 Description

fork CreateProcess Create a new process

waitpid WaitForSingIeObject Can wait for a process to exit

execve (none) Createprocess fork + execve

exit ExitProcess Terminate execution

open createFile Create a file or open an existing file

close CloseHandIe Close a file

read ReadFile Read data from a tile

Write WriteFile Write data to a file

I seek SetFilePointer Move the file pointer

stat GetFileAttributesEx Get various file attributes

mkdir CreateDirectory Create a new directory

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Windows Win32 A P I (2 of 2)

The Win32 A P I calls that roughly correspond to the U N I X
calls of Fig. 1-18.

Iseek SetFilePointer Move the tile pointer

stat GetFileAttributesEx Get various file attributes

mkdir CreateDirectory Remove an empty directory

rmdjr RemoveDjrectory Create a new directory

link (none) Win32 does not support links

unlink DeleteFile Win32 does not support mount

mount (none) Win32 does not support mount

umount (none) Destroy an existing file

chdir SetCurrentDirectory Change the current working directory

chmod (none) Win32 does not support security
(although NT does)

kill (none) Win32 does not support signals

time GetLocamme Get the current time

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monolithic Systems (1 of 2)

Basic structure of O S
1. A main program that invokes the requested service

procedure.
2. A set of service procedures that carry out the system

calls.
3. A set of utility procedures that help the service

procedures.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monolithic Systems (2 of 2)

Figure 1-24. A simple structuring model for a monolithic system.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Layered Systems

Structure of the THE operating system.

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and

multiprogramming

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Microkernels

Figure 1-26. Simplified structure of the M I N I X 3 system.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Client-Server Model

Figure 1-27. The client-server model over a network.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Virtual Machines

Figure 1-28. The structure of V M/370 with C M S.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Virtual Machines Rediscovered

Figure 1-29. (a) A type 1 hypervisor. (b) A pure type 2 hypervisor. (c) A practical type 2
hypervisor.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Large Programming Projects

Figure 1-30. The process of compiling C and header files to make an executable.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Metric Units

Figure 1-31. The principal metric prefixes.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright

	Modern Operating Systems
	Components of a Modern Computer (1 of 2)
	Components of a Modern Computer (2 of 2)
	The Operating System as an Extended Machine
	The Operating System as a Resource Manager
	History of Operating Systems
	Transistors and Batch Systems (1 of 3)
	Transistors and Batch Systems (2 of 3)
	Transistors and Batch Systems (3 of 3)
	I Cs and Multiprogramming
	Processors (1 of 2)
	Processors (2 of 2)
	Memory (1 of 3)
	Memory (2 of 3)
	Memory (3 of 3)
	Disks
	I/O Devices (1 of 2)
	I/O Devices (2 of 2)
	Buses
	The Operating System Zoo
	Processes (1 of 2)
	Processes (2 of 2)
	Files (1 of 3)
	Files (2 of 3)
	Files (3 of 3)
	Ontogeny Recapitulates Phylogeny
	System Calls (1 of 5)
	System Calls (2 of 5)
	System Calls (3 of 5)
	System Calls (4 of 5)
	System Calls (5 of 5)
	System Calls for Process Management
	System Calls for File Management
	System Calls for Directory Management (1 of 2)
	System Calls for Directory Management (2 of 2)
	The Windows Win32 A P I (1 of 2)
	The Windows Win32 A P I (2 of 2)
	Monolithic Systems (1 of 2)
	Monolithic Systems (2 of 2)
	Layered Systems
	Microkernels
	Client-Server Model
	Virtual Machines
	Virtual Machines Rediscovered
	Large Programming Projects
	Metric Units
	Copyright

