Modern Operating Systems
Fourth Edition

TANENBAUM MODERN
BOS OPERATING

SYSTEMS

hhhhh AT Chapter 1

Introduction

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Components of a Modern Computer @ of2)

* One or more processors
* Main memory

* Disks

* Printers

* Keyboard

* Mouse

* Display

* Network interfaces

* |/O devices

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Components of a Modern Computer of2)

E-mail Music

Web reader player

browser

User mode <
User interface program > Software
.
Kernel mode { Operating system
J

Figure 1-1. Where the operating system fits in.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Operating System as an Extended

Machine

Application programs

-«—— Beautiful interface

-<— Ugly interface

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Operating System as a Resource
Manager

* Top down view
— Provide abstractions to application programs

* Bottom up view
— Manage pieces of complex system

* Alternative view
— Provide orderly, controlled allocation of resources

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

History of Operating Systems

* The first generation (1945-55) vacuum tubes

* The second generation (1955-65) transistors and batch
systems

* The third generation (1965-1980) ICs and
multiprogramming

* The fourth generation (1980-present) personal computers

* The fifth generation (1990-present) mobile computers

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Transistors and Batch Systems (1 of3)

Tape
drive
Card ——

reader | g
ity
— a 7| P \

Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b) 1401 reads
batch of jobs onto tape.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Transistors and Batch Systems (2 of3)

System
Input tape Output

tape
e (@

Printer

0|6l . '
SN T A
[[i
L| T‘I) 7004 Tﬁ‘f 1401
JN | I JL .
(c) (d) (e) (f)

Figure 1-3. An early batch system. (c) Operator carries input tape to 7094. (d)7094 does
computing. (e) Operator carries output tape to 1401. (f) 1401 prints output.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Transistors and Batch Systems of3)

(/’$END

s
_~———Data for program
e

/,/ Fortran program /"’J

/ SFORTRAN

/JDB 10,7710802, MARVIN TANENBAUM L/

Figure 1-4. Structure of a typical FMS job.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

ICs and Multiprogramming

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Figure 1-5. A multiprogramming system with three jobs in memory.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processors (i1 of2)

Figure 1-6. Some of the components of a simple personal computer.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitor
Hard
Keyboard USB printer disk drive
/rwx—\ S
- Hard
Video Keyboard USB -
I%l Memory controller controller controller cnr?tlrsc:lfller
Bus

Processors (2 of 2)

Fetch
unit

Decode
unit

Execute
unit

Fetch Decode
unit unit
Fetch Decode
unit unit

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Holding

buffer

Execute
unit

Execute
unit

Execute
unit

Memory (of 3)

Core1| | Core?2 cache | Core 1| | Core 2
L2 L2

Hi L

Core3| |Core4d Core3| | Core 4

(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache. (b) A quad-core chip with
separate L2 caches.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory (2 of 3)

Typical access time Typical capacity
1 nsec Registers <1 KB
2 Nsec Cache 4 MB
10 nsec Main memory 1-8GB
10 msec Magnetic disk 1-4TB

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory g of 3)

Caching system issues:

1.
2.
3.

When to put a new item into the cache.
Which cache line to put the new item in.

Which item to remove from the cache when a slot Is
needed.

. Where to put a newly evicted item in the larger

memory.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disks

Surface 7 —__

e,

Surface 6 -
Surface 5—__

—_

Surface 4 —
Surface 3—__

T
Surface 2 —

Surface 1—_
B
Surface 0 -

Figure 1-10. Structure of a disk drive.

@ Pearson

Read/write head (1 per surface)

——
2 Direction of arm motion

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/0 Devices (1 of2)

Disk drive
HJ
3| Interrupt Disk
CPU ™ controller controller
A
Jit_ g3
y |

Figure 1-11. (a) The steps in starting an I/O device and getting an interrupt.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/0 Devices @ of2)

¢ Current instruction
[Next instruction «

3. Return
1. Interrupt

\
2. Dispatch f
to handler \T

Interrupt handler 7

Figure 1-11. (b) Interrupt processing involves taking the interrupt, running the interrupt
handler, and returning to the user program.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Buses

Core1 Core2

Cache Cache

| Shared cache |
PCle _
| GPU Cores | —— Graphics |
| DDR3 Memory |———— Memory controllers -——— DDR3 Memory |

DMI
[PCIsot | B SATA |
[PCIslot | Platform [USB2O0poris |
Controller
| PCI slot | Hub — USB3.0ports |
| PCI slot | |

W Gigabit Ethernet
e

| More PCle devices|

Figure 1-12. The structure of a large x86 system

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Operating System Zoo

Mainframe Operating Systems

* Server Operating Systems

* Multiprocessor Operating Systems

* Personal Computer Operating Systems
* Handheld Computer Operating Systems
* Embedded Operating Systems

* Sensor Node Operating Systems

* Real-Time Operating Systems

* Smart Card Operating Systems

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processes (1 0f2)

Key concept in all operating systems
Definition: a program in execution

Process Is associated with an address space
Also associated with set of resources

Process can be thought of as a container
— Holds all information needed to run program

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Processes 2 of2)

Figure 1-13. A process tree. Process A created two child processes, B and C. Process B
created three child processes, D, E, and F.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Files (103

Root directory

]

Students \Fﬂcuh’

. 5
o ™

Robbert Maitty Leo Prof Brown Prof Green Prof White

i
J
. 7% y d
¥ \ b
Courses Papers Grants Committees
g i ') i
i I 3
\] i
i

R T :
NV
O 'GGC}/SOSP

Files

-1\..,_‘_1__

C5101 C5105 COST-11

Figure 1-14. Afile system for a university department.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Files o3

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not accessible. (b) After
mounting, they are part of the file hierarchy.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Files 3 of3)

Process Process
Pipe
A B

Figure 1-16. Two processes connected by a pipe.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Ontogeny Recapitulates Phylogeny

* Each new “species” of computer
— Goes through same development as “ancestors”

* Consequence of impermanence
— Text often looks at “obsolete” concepts
— Changes in technology may bring them back

* Happens with large memory, protection hardware, disks,
virtual memory

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls ¢ of 5)

Address
OXFFFFFFFF _
?etu;n :ﬁc:ﬂer | 7 Library
rap to the kermne ', procedure
5| Put code for read in register | | read
10,
4
U #
ser space { Increment SP 1
r Call read
3| Pushfd >L.Iserpmgram
2| Push &buffer calling read
1| Push nbytes
6 9
[’
Kernel space) 7 8 | syscall
(Operating system) <L Aoiin - " | handler
0

Figure 1-17. The 11 steps in making the system call read(fd, buffer, nbytes).

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls 2 of5)

Some of the major POSIX system calls. The return code s is -1 if an error has
occurred. The return codes are as follows: pid is a process id, fd is a file
descriptor, n is a byte count, position is an offset within the file, and seconds

IS the elapsed time.

Process Management

&statloc, options)

Call Description

pid fork() Create a child process identical
to the parent

pid waitpid(pid, Wait for a child to terminate

S execve(name, argv,
environp)

Replace a process' core image

exit(status)

Terminate process execution
and return status

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls of5)

Some of the major POSIX system calls. The return code s is -1 if an error has
occurred. The return codes are as follows: pid is a process id, fd is a file
descriptor, n is a byte count, position is an offset within the file, and seconds
IS the elapsed time.

File Management

Call Description

fd open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file
Position = Iseek(fd, offset, Move the file pointer

whence)

s = stat(name, &buf) Get a file's status information

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls of5)

Some of the major POSIX system calls. The return code s is -1 if an
error has occurred. The return codes are as follows: pid is a process
Id, fd is a file descriptor, n is a byte count, position is an offset within
the file, and seconds is the elapsed time.

Directory and file system management

Call

Description

s = mkdir(name, mode)

Open a file for reading, writing, or both

s= rmdir(name)

Close an open file

s= link(namel , name2)

Read data from a file into a buffer

s= unlink(name)

Write data from a buffer into a file

s= mount(special, name, flag)

Move the file pointer

= umount(special)

Get a file's status information

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls of5)

Some of the major POSIX system calls. The return code s
Is —1 if an error has occurred. The return codes are as
follows: pid is a process id, fd is a file descriptor, nis a
byte count, position is an offset within the file, and
seconds is the elapsed time.

Miscellaneous

Call Description
s = chdir(dirname) Change the working directory

s= chmod(name,mode) | Change a file's protection bits

s= kill(pid,signal) Send a signal to a process

s= time(&seconds) Get the elapsed time since Jan. 1, 1970

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for Process Management

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
lelse |
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to be
defined as 1.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for File Management

Address (hex)
FFFF

Stack
77
Y /

Data

Text
0000

Figure 1-20. Processes have three segments: text, data, and stacks

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for Directory Management (1 of
2)

/usr/ast /usr/jim /usr/ast /usr/jim
16 | mail 31 | bin 16 | mail 31 | bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59 | f.c. 40 | test 59 | f.c.

38 | progi 70 | note 38 | prog1

(a) (b)

Figure 1-21. (a) Two directories before linking usr/jim/memo to ast’s directory. (b) The
same directories after linking.s

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

System Calls for Directory Management (2 of
2)
bin dev lib mnt wusr b%
(a) (b)

Figure 1-22. (a) File system before the mount. (b) File system after the mount.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Windows Win32 API (ot 2)

The Win32 API calls that roughly correspond to the UNIX
calls of Fig. 1-18.

UNIX Win32 Description

fork CreateProcess Create a new process
waitpid WaitForSingleObject | Can wait for a process to exit
execve (none) Createprocess fork + execve
exit ExitProcess Terminate execution

open createFile Create a file or open an existing file
close CloseHandle Close afile

read ReadFile Read data from a tile

Write WriteFile Write data to a file

| seek SetFilePointer Move the file pointer

stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Windows Win32 API ot 2

The Win32 API calls that roughly correspond to the UNIX

calls of Fig. 1-18.

Iseek SetFilePointer Move the tile pointer

stat GetFileAttributesEx | Get various file attributes

mkdir CreateDirectory Remove an empty directory

rmdjr RemoveDjrectory Create a new directory

link (none) Win32 does not support links

unlink DeleteFile Win32 does not support mount

mount (none) Win32 does not support mount

umount (none) Destroy an existing file

chdir SetCurrentDirectory | Change the current working directory

chmod (none) Win32 does not support security
(although NT does)

Kill (none) Win32 does not support signals

time GetLocamme Get the current time

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monolithic Systems @ of 2)

Basic structure of OS

1. A main program that invokes the requested service
procedure.

2. A set of service procedures that carry out the system
calls.

3. A set of utility procedures that help the service
procedures.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monolithic Systems (2 of 2)

Main
procedure

Service
procedures

Utility
procedures

Figure 1-24. A simple structuring model for a monolithic system.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Layered Systems

Structure of the THE operating system.

Layer

Function

The operator

User programs

Input/output management

Operator-process communication

Memory and drum management

OFRPINW|~|OI

Processor allocation and
multiprogramming

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Microkernels

~__4Process
4 / r
// User progs.
User 7
mode '< @ Servers

Microkernel handles interrupts,
processes, scheduling, IPC

Figure 1-26. Simplified structure of the MINIX 3 system.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Client-Server Model

Machine 1 Machine 2 Machine 3 Machine 4
Client T * File server Process server Terminal server
.. Kernel l J Kernel Kemel Kemel RO
»

\ MNetwork

Message from
client to server

Figure 1-27. The client-server model over a network.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Virtual Machines

Virtual 370s

. .
_-"'-- I q--\"'-\-\.
— e
ol ol

System calls here

l/O instructions here
Trap here —= VM/370
370 Bare hardware

Trap here

Figure 1-28. The structure of VM/370 with CMS.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Virtual Machines Rediscovered

Guest OS process Guest OS process
Excel Word Mplayer Apollon é Host OS é)
Kernel
rocess
______Q_Q____ P _____Q__Q___ module
Guest 0S l Guest 0S |
Machine simulator O Q Type 2 hypervisor O O

Type 1 hypervisor Host operating system Host operating system

(@) (b) (c)

Figure 1-29. (a) Atype 1 hypervisor. (b) A pure type 2 hypervisor. (c) A practical type 2
hypervisor.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Large Programming Projects

N 0 X
c /\
preprocesor
-:-::m::uller
aln 0 helJp} DThE
@,—p linker

Executable
\/ binary program
| a.out

_/

Figure 1-30. The process of compiling C and header files to make an executable.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Metric Units

Exp. Explicit Prefix | Exp. Explicit Prefix
10 | 0.001 milli 10° 1,000 | Kilo
10° | 0.000001 micro | 10° 1,000,000 | Mega
10% | 0.000000001 nano | 10° 1,000,000,000 | Giga
10-'2 | 0.000000000001 pico 102 1,000,000,000,000 | Tera
107" | 0.000000000000001 femto | 10" 1,000,000,000,000,000 | Peta
10~ | 0.000000000000000001 atto 10'® 1,000,000,000,000,000,000 | Exa
102" | 0.000000000000000000001 zepto | 107 1,000,000,000,000,000,000,000 | Zetta
10-2* | 0.000000000000000000000001 | yocto | 102* | 1,000,000,000,000,000,000,000,000 | Yotta

Figure 1-31. The principal metric prefixes.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these

restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials,

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

	Modern Operating Systems
	Components of a Modern Computer (1 of 2)
	Components of a Modern Computer (2 of 2)
	The Operating System as an Extended Machine
	The Operating System as a Resource Manager
	History of Operating Systems
	Transistors and Batch Systems (1 of 3)
	Transistors and Batch Systems (2 of 3)
	Transistors and Batch Systems (3 of 3)
	I Cs and Multiprogramming
	Processors (1 of 2)
	Processors (2 of 2)
	Memory (1 of 3)
	Memory (2 of 3)
	Memory (3 of 3)
	Disks
	I/O Devices (1 of 2)
	I/O Devices (2 of 2)
	Buses
	The Operating System Zoo
	Processes (1 of 2)
	Processes (2 of 2)
	Files (1 of 3)
	Files (2 of 3)
	Files (3 of 3)
	Ontogeny Recapitulates Phylogeny
	System Calls (1 of 5)
	System Calls (2 of 5)
	System Calls (3 of 5)
	System Calls (4 of 5)
	System Calls (5 of 5)
	System Calls for Process Management
	System Calls for File Management
	System Calls for Directory Management (1 of 2)
	System Calls for Directory Management (2 of 2)
	The Windows Win32 A P I (1 of 2)
	The Windows Win32 A P I (2 of 2)
	Monolithic Systems (1 of 2)
	Monolithic Systems (2 of 2)
	Layered Systems
	Microkernels
	Client-Server Model
	Virtual Machines
	Virtual Machines Rediscovered
	Large Programming Projects
	Metric Units
	Copyright

