
Modern Operating Systems
Fourth Edition

Chapter 2
Processes and Threads

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Process Model (1 of 3)

Figure 2-1. (a) Multiprogramming of four programs.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Process Model (2 of 3)

Figure 2-1. (b) Conceptual model of four independent, sequential processes.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Process Model (3 of 3)

Figure 2-1. (c) Only one program is active at once.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process Creation

Four principal events that cause processes to be created:
1. System initialization.
2. Execution of a process creation system call by a

running process.
3. A user request to create a new process.
4. Initiation of a batch job.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process Termination

Typical conditions which terminate a process:
1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).
4. Killed by another process (involuntary).

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process States (1 of 3)

Three states a process may be in:
1. Running (actually using the C P U at that instant).
2. Ready (runnable; temporarily stopped to let another

process run).
3. Blocked (unable to run until some external event

happens).

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process States (2 of 3)

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process States (3 of 3)

Figure 2-3. The lowest layer of a process-structured operating system handles interrupts
and scheduling. Above that layer are sequential processes.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementation of Processes (1 of 2)

Some of the fields of a typical process table entry.

Process management
Registers
Program counter
Program status word
Stack pointer
Process state
Priority
Scheduling parameters
Process I D
Parent process
Process group
Signals
Time when process started
C P U time used
Children's C P U time
Time of next alarm

Memory management
Pointer to text segment info
Pointer to data segment info
Pointer to stack segment info

File management
Root directory
Working directory
File descriptors
User I D
Group I D

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementation of Processes (2 of 2)

Skeleton of what the lowest level of the operating system does when
an interrupt occurs.

1. Hardware stacks program counter, etc.
2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.
4. Assembly language procedure sets up new stack.
5. C interrupt service runs (typically reads and buffers input).
6. Scheduler decides which process is to run next.
7. C procedure returns to the assembly code.
8. Assembly language procedure starts up new current process.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Modeling Multiprogramming

Figure 2-6. C P U utilization as a function of the number of processes in memory.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (1 of 4)

Figure 2-7. A word processor with three threads.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (2 of 4)

Figure 2-8. A multithreaded Web server.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (3 of 4)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread. (b) Worker
thread.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (4 of 4)

Three ways to construct a server.

Model Characteristics
Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls, interrupts

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model (1 of 3)

Figure 2-11. (a) Three processes each with one thread. (b) One process with three
threads.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model (2 of 3)

The first column lists some items shared by all threads in a
process. The second one lists some items private to each
thread.

Per process items
Address space
Global variables
Open files
Child processes
Pending alarms
Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers
Stack
State

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model (3 of 3)

Figure 2-13. Each thread has its own stack.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

P O S I X Threads (1 of 3)

Some of the Pthreads function calls.

Thread call Description
Pthread_create Create a new thread

Pthread—exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yield Release the CPU to let another thread run

Pthread_attr—init Create and initialize a thread's attribute structure

Pthread_attr_destroy Remove a thread's attribute structure

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

P O S I X Threads (2 of 3)

Figure 2-15. An example program using threads.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

P O S I X Threads (3 of 3)

Figure 2-15. An example program using threads.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementing Threads in User Space

Figure 2-16. (a) A user-level threads package. (b) A threads package managed by the
kernel.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Hybrid Implementations

Figure 2-17. Multiplexing user-level threads onto kernel-level threads.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Pop-Up Threads

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the message
arrives. (b) After the message arrives.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Making Single-Threaded Code
Multithreaded (1 of 2)

Figure 2-19. Conflicts between threads over the use of a global variable.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Making Single-Threaded Code
Multithreaded (2 of 2)

Figure 2-20. Threads can have private global variables.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Race Conditions

Figure 2-21. Two processes want to access shared memory at the same time.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Critical Regions (1 of 2)

Requirements to avoid race conditions:
1. No two processes may be simultaneously inside

their critical regions.
2. No assumptions may be made about speeds or the

number of CPUs.
3. No process running outside its critical region may

block other processes.
4. No process should have to wait forever to enter its

critical region.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Critical Regions (2 of 2)

Figure 2-22. Mutual exclusion using critical regions.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting:
Strict Alternation

Figure 2-23. A proposed solution to the critical region problem. (a) Process 0. (b) Process
1. In both cases, be sure to note the semicolons terminating the while statements.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting:
Peterson’s Solution

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting: The
TSL Instruction (1 of 2)

Figure 2-25. Entering and leaving a critical region using the T S L instruction.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting: The
TSL Instruction (2 of 2)

Figure 2-26. Entering and leaving a critical region using the XCHG instruction

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Sleep and Wakeup: The Producer-
Consumer Problem (1 of 2)

Figure 2-27. The producer-consumer problem with a fatal race condition.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Sleep and Wakeup: The Producer-
Consumer Problem (2 of 2)

Figure 2-27. The producer-consumer problem with a fatal race condition.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Semaphores (1 of 2)

Figure 2-28. The producer-consumer problem using semaphores.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Semaphores (2 of 2)

Figure 2-28. The producer-consumer problem using semaphores.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes

Figure 2-29. Implementation of mutex_lock and mutex_unlock.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads (1 of 5)

Some of the Pthreads calls relating to mutexes.

Thread Call Description
Pthread_mutex Create a mutex
Pthread_mutex Destroy an existing mutex
Pthread _mutex Acquire a lock or block
Pthread_mutex Acquire a lock or fail
Pthread_mutex Release a lock

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads (2 of 5)

Some of the Pthreads calls relating to condition variables.

Thread Call Description
Pthread_cond_init Create a mutex
Pthread_cond_destroy Destroy an existing mutex
Pthread _cond_wait Acquire a lock or block
Pthread_cond_signal Acquire a lock or fail
Pthread_cond_broadcast Release a lock

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads (3 of 5)

Figure 2-32. Using threads to solve the producer-consumer problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads (4 of 5)

Figure 2-32. Using threads to solve the producer-consumer problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads (5 of 5)

Figure 2-32. Using threads to solve the producer-consumer problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (1 of 6)

Figure 2-33. A monitor.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (2 of 6)

Figure 2-34. An outline of the producer-consumer problem with monitors. Only one
monitor procedure at a time is active. The buffer has N slots.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (3 of 6)

Figure 2-34. An outline of the producer-consumer problem with monitors. Only one
monitor procedure at a time is active. The buffer has N slots.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (4 of 6)

Figure 2-35. A solution to the producer-consumer problem in Java.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (5 of 6)

Figure 2-35. A solution to the producer-consumer problem in Java.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (6 of 6)

Figure 2-35. A solution to the producer-consumer problem in Java.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Producer-Consumer Problem with
Message Passing (1 of 2)

Figure 2-36. The producer-consumer problem with N messages.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Producer-Consumer Problem with
Message Passing (2 of 2)

Figure 2-36. The producer-consumer problem with N messages.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Barriers

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. (b) All processes but
one blocked at the barrier. (c) When the last process arrives at the barrier, all of them are
let through.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Avoiding Locks: Read-Copy-Update (1 of 2)

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing a
branch-all without locks

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Avoiding Locks: Read-Copy-Update (2 of 2)

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing a
branch-all without locks

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Introduction to Scheduling Process
Behavior

Figure 2-39. Bursts of C P U usage alternate with periods of waiting for I/O. (a) A C P U-
bound process. (b) An I/O-bound process.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Categories of Scheduling Algorithms

1. Batch.

2. Interactive.

3. Real time.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling Algorithm Goals (1 of 2)

Some goals of the scheduling algorithm under different
circumstances.

• All systems
– Fairness - giving each process a fair share of the C P

U
– Policy enforcement - seeing that stated policy is

carried out
– Balance - keeping all parts of the system busy

• Batch systems
– Throughput - maximize jobs per hour

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling Algorithm Goals (2 of 2)

– Turnaround time - minimize time between submission
and termination

– C P U utilization - keep the C P U busy all the time

• Interactive systems
– Response time - respond to requests quickly
– Proportionality - meet users' expectations

• Real-time systems
– Meeting deadlines - avoid losing data
– Predictability - avoid quality degradation in multimedia

systems

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling in Batch Systems

• First-Come First-Served

• Shortest Job First

• Shortest Remaining Time Next

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Shortest Job First

Figure 2-41. An example of shortest job first scheduling. (a) Running four jobs in the
original order. (b) Running them in shortest job first order.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling in Interactive Systems

• Round-Robin Scheduling

• Priority Scheduling

• Multiple Queues

• Shortest Process Next

• Guaranteed Scheduling

• Lottery Scheduling

• Fair-Share Scheduling

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Round-Robin Scheduling

Figure 2-42. Round-robin scheduling. (a) The list of runnable processes. (b) The list of
runnable processes after B uses up its quantum.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Priority Scheduling

Figure 2-43. A scheduling algorithm with four priority classes.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling in Real-Time Systems

• Time plays an essential role

• Categories
– Hard real time
– Soft real time
– Periodic or aperiodic

• Schedulable satisfies

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Scheduling (1 of 2)

Figure 2-44. (a) Possible scheduling of user-level threads with a 50-msec process
quantum and threads that run 5 msec per C P U burst.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Scheduling (2 of 2)

Figure 2-44. (b) Possible scheduling of kernel-level threads with the same characteristics
as (a).

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (1 of 5)

Figure 2-45. Lunch time in the Philosophy Department.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (2 of 5)

Figure 2-46. A nonsolution to the dining philosophers problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (3 of 5)

Figure 2-47. A solution to the dining philosophers problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (4 of 5)

Figure 2-47. A solution to the dining philosophers problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (5 of 5)

Figure 2-47. A solution to the dining philosophers problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Readers and Writers Problem (1 of 2)

Figure 2-48. A solution to the readers and writers problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Readers and Writers Problem (2 of 2)

Figure 2-48. A solution to the readers and writers problem.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright

	Modern Operating Systems
	The Process Model (1 of 3)
	The Process Model (2 of 3)
	The Process Model (3 of 3)
	Process Creation
	Process Termination
	Process States (1 of 3)
	Process States (2 of 3)
	Process States (3 of 3)
	Implementation of Processes (1 of 2)
	Implementation of Processes (2 of 2)
	Modeling Multiprogramming
	Thread Usage (1 of 4)
	Thread Usage (2 of 4)
	Thread Usage (3 of 4)
	Thread Usage (4 of 4)
	The Classical Thread Model (1 of 3)
	The Classical Thread Model (2 of 3)
	The Classical Thread Model (3 of 3)
	P O S I X Threads (1 of 3)
	P O S I X Threads (2 of 3)
	P O S I X Threads (3 of 3)
	Implementing Threads in User Space
	Hybrid Implementations
	Pop-Up Threads
	Making Single-Threaded Code Multithreaded (1 of 2)
	Making Single-Threaded Code Multithreaded (2 of 2)
	Race Conditions
	Critical Regions (1 of 2)
	Critical Regions (2 of 2)
	Mutual Exclusion with Busy Waiting: Strict Alternation
	Mutual Exclusion with Busy Waiting: Peterson’s Solution
	Mutual Exclusion with Busy Waiting: The TSL Instruction (1 of 2
	Mutual Exclusion with Busy Waiting: The TSL Instruction (2 of 2
	Sleep and Wakeup: The Producer-Consumer Problem (1 of 2)
	Sleep and Wakeup: The Producer-Consumer Problem (2 of 2)
	Semaphores (1 of 2)
	Semaphores (2 of 2)
	Mutexes
	Mutexes in Pthreads (1 of 5)
	Mutexes in Pthreads (2 of 5)
	Mutexes in Pthreads (3 of 5)
	Mutexes in Pthreads (4 of 5)
	Mutexes in Pthreads (5 of 5)
	Monitors (1 of 6)
	Monitors (2 of 6)
	Monitors (3 of 6)
	Monitors (4 of 6)
	Monitors (5 of 6)
	Monitors (6 of 6)
	The Producer-Consumer Problem with Message Passing (1 of 2)
	The Producer-Consumer Problem with Message Passing (2 of 2)
	Barriers
	Avoiding Locks: Read-Copy-Update (1 of 2)
	Avoiding Locks: Read-Copy-Update (2 of 2)
	Introduction to Scheduling Process Behavior
	Categories of Scheduling Algorithms
	Scheduling Algorithm Goals (1 of 2)
	Scheduling Algorithm Goals (2 of 2)
	Scheduling in Batch Systems
	Shortest Job First
	Scheduling in Interactive Systems
	Round-Robin Scheduling
	Priority Scheduling
	Scheduling in Real-Time Systems
	Thread Scheduling (1 of 2)
	Thread Scheduling (2 of 2)
	The Dining Philosophers Problem (1 of 5)
	The Dining Philosophers Problem (2 of 5)
	The Dining Philosophers Problem (3 of 5)
	The Dining Philosophers Problem (4 of 5)
	The Dining Philosophers Problem (5 of 5)
	The Readers and Writers Problem (1 of 2)
	The Readers and Writers Problem (2 of 2)
	Copyright

