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The Process Model (1 of 3)

Figure 2-1. (a) Multiprogramming of four programs.
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The Process Model (2 of 3)

Figure 2-1. (b) Conceptual model of four independent, sequential processes. 
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The Process Model (3 of 3)

Figure 2-1. (c) Only one program is active at once.
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Process Creation

Four principal events that cause processes to be created:
1. System initialization.
2. Execution of a process creation system call by a 

running process.
3. A user request to create a new process.
4. Initiation of a batch job.
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Process Termination

Typical conditions which terminate a process:
1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).
4. Killed by another process (involuntary).
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Process States (1 of 3)

Three states a process may be in:
1. Running (actually using the C  P U at that instant).
2. Ready (runnable; temporarily stopped to let another 

process run).
3. Blocked (unable to run until some external event 

happens).
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Process States (2 of 3)

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

Figure 2-2. A process can be in running, blocked, or ready state. 
Transitions between these states are as shown.
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Process States (3 of 3)

Figure 2-3. The lowest layer of a process-structured operating system handles interrupts 
and scheduling. Above that layer are sequential processes.



Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementation of Processes (1 of 2)

Some of the fields of a typical process table entry.

Process management 
Registers 
Program counter 
Program status word 
Stack pointer 
Process state 
Priority 
Scheduling parameters 
Process I  D
Parent process 
Process group 
Signals 
Time when process started 
C P U time used 
Children's C  P U time 
Time of next alarm 

Memory management 
Pointer to text segment info 
Pointer to data segment info 
Pointer to stack segment info 

File management 
Root directory 
Working directory 
File descriptors 
User I  D 
Group I  D 
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Implementation of Processes (2 of 2)

Skeleton of what the lowest level of the operating system does when 
an interrupt occurs.

1. Hardware stacks program counter, etc. 
2. Hardware loads new program counter from interrupt vector. 
3. Assembly language procedure saves registers. 
4. Assembly language procedure sets up new stack. 
5. C interrupt service runs (typically reads and buffers input). 
6. Scheduler decides which process is to run next. 
7. C procedure returns to the assembly code. 
8. Assembly language procedure starts up new current process. 
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Modeling Multiprogramming

Figure 2-6. C  P U utilization as a function of the number of processes in memory.
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Thread Usage (1 of 4)

Figure 2-7. A word processor with three threads.
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Thread Usage (2 of 4)

Figure 2-8. A multithreaded Web server.
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Thread Usage (3 of 4)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread. (b) Worker 
thread.
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Thread Usage (4 of 4)

Three ways to construct a server.

Model Characteristics
Threads Parallelism, blocking system calls 

Single-threaded process No parallelism, blocking system calls 

Finite-state machine Parallelism, nonblocking system calls, interrupts 
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The Classical Thread Model (1 of 3)

Figure 2-11. (a) Three processes each with one thread. (b) One process with three 
threads.



Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model (2 of 3)

The first column lists some items shared by all threads in a 
process.  The second one lists some items private to each 
thread.

Per process items 
Address space 
Global variables 
Open files 
Child processes 
Pending alarms 
Signals and signal handlers 
Accounting information 

Per thread items 
Program counter 
Registers 
Stack 
State 
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The Classical Thread Model (3 of 3)

Figure 2-13. Each thread has its own stack.
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P O S I X Threads (1 of 3)

Some of the Pthreads function calls.

Thread call Description 
Pthread_create Create a new thread 

Pthread—exit Terminate the calling thread 

Pthread_join Wait for a specific thread to exit 

Pthread_yield Release the CPU to let another thread run 

Pthread_attr—init Create and initialize a thread's attribute structure 

Pthread_attr_destroy Remove a thread's attribute structure 
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P O S I X Threads (2 of 3)

Figure 2-15. An example program using threads.
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P O S I X Threads (3 of 3)

Figure 2-15. An example program using threads.
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Implementing Threads in User Space

Figure 2-16. (a) A user-level threads package. (b) A threads package managed by the 
kernel.
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Hybrid Implementations

Figure 2-17. Multiplexing user-level threads onto kernel-level threads.
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Pop-Up Threads

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the message 
arrives. (b) After the message arrives.



Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Making Single-Threaded Code 
Multithreaded (1 of 2)

Figure 2-19. Conflicts between threads over the use of a global variable.
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Making Single-Threaded Code 
Multithreaded (2 of 2)

Figure 2-20. Threads can have private global variables.
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Race Conditions

Figure 2-21. Two processes want to access shared memory at the same time.
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Critical Regions (1 of 2)

Requirements to avoid race conditions:
1. No two processes may be simultaneously inside 

their critical regions.
2. No assumptions may be made about speeds or the 

number of CPUs.
3. No process running outside its critical region may 

block other processes.
4. No process should have to wait forever to enter its 

critical region.
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Critical Regions (2 of 2)

Figure 2-22. Mutual exclusion using critical regions.
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Mutual Exclusion with Busy Waiting: 
Strict Alternation

Figure 2-23. A proposed solution to the critical region problem. (a) Process 0. (b) Process 
1. In both cases, be sure to note the semicolons terminating the while statements.
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Mutual Exclusion with Busy Waiting: 
Peterson’s Solution

Figure 2-24. Peterson’s solution for achieving mutual exclusion.



Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting: The 
TSL Instruction (1 of 2)

Figure 2-25. Entering and leaving a critical region using the T  S L instruction.
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Mutual Exclusion with Busy Waiting: The 
TSL Instruction (2 of 2)

Figure 2-26. Entering and leaving a critical region using the XCHG instruction
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Sleep and Wakeup: The Producer-
Consumer Problem (1 of 2)

Figure 2-27. The producer-consumer problem with a fatal race condition.
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Sleep and Wakeup: The Producer-
Consumer Problem (2 of 2)

Figure 2-27. The producer-consumer problem with a fatal race condition.
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Semaphores (1 of 2)

Figure 2-28. The producer-consumer problem using semaphores.
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Semaphores (2 of 2)

Figure 2-28. The producer-consumer problem using semaphores.
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Mutexes

Figure 2-29. Implementation of mutex_lock and mutex_unlock.
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Mutexes in Pthreads (1 of 5)

Some of the Pthreads calls relating to mutexes.

Thread Call Description
Pthread_mutex Create a mutex
Pthread_mutex Destroy an existing mutex
Pthread _mutex Acquire a lock or block
Pthread_mutex Acquire a lock or fail
Pthread_mutex Release a lock
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Mutexes in Pthreads (2 of 5)

Some of the Pthreads calls relating to condition variables.

Thread Call Description
Pthread_cond_init Create a mutex
Pthread_cond_destroy Destroy an existing mutex
Pthread _cond_wait Acquire a lock or block
Pthread_cond_signal Acquire a lock or fail
Pthread_cond_broadcast Release a lock
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Mutexes in Pthreads (3 of 5)

Figure 2-32. Using threads to solve the producer-consumer problem.
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Mutexes in Pthreads (4 of 5)

Figure 2-32. Using threads to solve the producer-consumer problem.
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Mutexes in Pthreads (5 of 5)

Figure 2-32. Using threads to solve the producer-consumer problem.
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Monitors (1 of 6)

Figure 2-33. A monitor.
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Monitors (2 of 6)

Figure 2-34. An outline of the producer-consumer problem with monitors. Only one 
monitor procedure at a time is active. The buffer has N slots.
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Monitors (3 of 6)

Figure 2-34. An outline of the producer-consumer problem with monitors. Only one 
monitor procedure at a time is active. The buffer has N slots.
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Monitors (4 of 6)

Figure 2-35. A solution to the producer-consumer problem in Java.
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Monitors (5 of 6)

Figure 2-35. A solution to the producer-consumer problem in Java.
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Monitors (6 of 6)

Figure 2-35. A solution to the producer-consumer problem in Java.
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The Producer-Consumer Problem with 
Message Passing (1 of 2)

Figure 2-36. The producer-consumer problem with N messages.
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The Producer-Consumer Problem with 
Message Passing (2 of 2)

Figure 2-36. The producer-consumer problem with N messages.
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Barriers

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. (b) All processes but 
one blocked at the barrier. (c) When the last process arrives at the barrier, all of them are 
let through.
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Avoiding Locks: Read-Copy-Update (1 of 2)

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing a 
branch-all without locks
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Avoiding Locks: Read-Copy-Update (2 of 2)

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing a 
branch-all without locks
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Introduction to Scheduling Process 
Behavior

Figure 2-39. Bursts of C  P U usage alternate with periods of waiting for I/O. (a) A C  P U-
bound process. (b) An I/O-bound process.
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Categories of Scheduling Algorithms

1. Batch.

2. Interactive.

3. Real time.
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Scheduling Algorithm Goals (1 of 2)

Some goals of the scheduling algorithm under different 
circumstances.

• All systems 
– Fairness - giving each process a fair share of the C  P 

U 
– Policy enforcement - seeing that stated policy is 

carried out 
– Balance - keeping all parts of the system busy 

• Batch systems 
– Throughput - maximize jobs per hour 
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Scheduling Algorithm Goals (2 of 2)

– Turnaround time - minimize time between submission 
and termination 

– C P U utilization - keep the C  P U busy all the time 

• Interactive systems 
– Response time - respond to requests quickly 
– Proportionality - meet users' expectations 

• Real-time systems 
– Meeting deadlines - avoid losing data 
– Predictability - avoid quality degradation in multimedia 

systems 
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Scheduling in Batch Systems

• First-Come First-Served

• Shortest Job First

• Shortest Remaining Time Next
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Shortest Job First

Figure 2-41. An example of shortest job first scheduling. (a) Running four jobs in the 
original order. (b) Running them in shortest job first order.
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Scheduling in Interactive Systems

• Round-Robin Scheduling

• Priority Scheduling

• Multiple Queues

• Shortest Process Next

• Guaranteed Scheduling

• Lottery Scheduling

• Fair-Share Scheduling
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Round-Robin Scheduling

Figure 2-42. Round-robin scheduling. (a) The list of runnable processes. (b) The list of 
runnable processes after B uses up its quantum.
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Priority Scheduling

Figure 2-43. A scheduling algorithm with four priority classes.
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Scheduling in Real-Time Systems

• Time plays an essential role

• Categories
– Hard real time
– Soft real time
– Periodic or aperiodic

• Schedulable satisfies
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Thread Scheduling (1 of 2) 

Figure 2-44. (a) Possible scheduling of user-level threads with a 50-msec process  
quantum and threads that run 5 msec per C  P U burst.
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Thread Scheduling (2 of 2) 

Figure 2-44. (b) Possible scheduling of kernel-level threads with the same characteristics 
as (a).
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The Dining Philosophers Problem (1 of 5)

Figure 2-45. Lunch time in the Philosophy Department.
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The Dining Philosophers Problem (2 of 5)

Figure 2-46. A nonsolution to the dining philosophers problem.



Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (3 of 5)

Figure 2-47. A solution to the dining philosophers problem.
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The Dining Philosophers Problem (4 of 5)

Figure 2-47. A solution to the dining philosophers problem.
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The Dining Philosophers Problem (5 of 5)

Figure 2-47. A solution to the dining philosophers problem.
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The Readers and Writers Problem (1 of 2)

Figure 2-48. A solution to the readers and writers problem.
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The Readers and Writers Problem (2 of 2)

Figure 2-48. A solution to the readers and writers problem.
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