Modern Operating Systems
Fourth Edition

TANENBAUM MODERN
HERBERT OPERATING
SYSTEMS

Processes and Threads

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Process Model (1 o3

One program counter

\'3 Process
- A switch

g
C

% T

Figure 2-1. (a) Multiprogramming of four programs.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Process Model 2 of3)

Four program counters

Al B ¥ GL DY

Figure 2-1. (b) Conceptual model of four independent, sequential processes.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Process Model of3)

% D — —
QD
EG | |
o B — —
A — —
Time —

Figure 2-1. (c) Only one program is active at once.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process Creation

Four principal events that cause processes to be created.:

1.
2.

System initialization.

Execution of a process creation system call by a
running process.

A user request to create a new process.
Initiation of a batch job.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process Termination

Typical conditions which terminate a process:
1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).
4. Killed by another process (involuntary).

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process States (1 of 3)

Three states a process may be in:
1. Running (actually using the CPU at that instant).

2. Ready (runnable; temporarily stopped to let another
Process run).

3. Blocked (unable to run until some external event
happens).

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process States 2 of 3)

Process blocks for input
Scheduler picks another process

Scheduler picks this process

- A

Input becomes available

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Process States @ of 3)

Processes

Scheduler

Figure 2-3. The lowest layer of a process-structured operating system handles interrupts
and scheduling. Above that layer are sequential processes.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementation of Processes (1 of2)

Some of the fields of a typical process table entry.

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children's CPU time

Time of next alarm

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementation of Processes (2of2)

Skeleton of what the lowest level of the operating system does when
an interrupt occurs.

1.

© N O O bk WD

Hardware stacks program counter, etc.

Hardware loads new program counter from interrupt vector.
Assembly language procedure saves registers.

Assembly language procedure sets up new stack.

C interrupt service runs (typically reads and buffers input).
Scheduler decides which process is to run next.

C procedure returns to the assembly code.

Assembly language procedure starts up new current process.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Modeling Multiprogramming

- 20% /O wait

£ 100 |

8

e L] 1
& go [50% I/O wait
=

c 60 80% I/O wait
=

8 4

€=

=

& 20

o

| | I | | | |
0 1 2 3 4 5 6 F 8 9 10
Degree of multiprogramming

Figure 2-6. CPU utilization as a function of the number of processes in memory.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (1 of 4

Faar score and wven || saton, o sy seson| | lem thai this oston| | whe oreggled hare| | b
& might live. It is| | beve oonsscrsed it far| | work which chay
brraght Swth apon this || dedicared, can loag| | ahogerher fimiag and| | sbove oo poor power| | foagit here beve
covssa & new rator: || edars W se mat o | | proper gar we should| | moadd or desecr Tha| |fer s sobly wdv
cmcaved im Hbary, |5 gewi bedlsdald of | | dodhin ward will lidhs cots, | |1 i mier for oe o ba | | el sof bass dad
 dedeaid o e ||t e Do, i oa b s | | e koo remsamber, | |bere debosrsd w tha | |wen ther chs pason,
proposom thas &l s have coose | | we canmot dedicais, we | | whar we my bere, be| |pesr msk semaimiag | |seder Ceed, kel Bave
B e craated agusl dadicam & pornan of | | cemmnt conmcovie wa|| it cen seww forget| |Sefore e chad from | | e ey birk of fresdoms
v wn e angageed | that fdd mx 5 Pl | | cmmmor bwlow ohan| | whet sy dl bare PR A | P —————
B s grms ol war || resing plece for tom | | grosd. The Bl b s for o the tiving, | | ke nosamd Sewosion | |8e pepls by e
mming whether e || who Sem g fher| | e, vieg md de || e, © b dedcesd| |0t came for whics | | popie, jor Se peops

I, J
'

|

[

Keyboard Disk

Figure 2-7. A word processor with three threads.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (2 of 4

Web server process

* ™
Dispatcher thread
- Worker thread (ehr
e space
Web page cache

4
Kernel
Kernel space

Network
connection

Figure 2-8. A multithreaded Web server.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (3 of 4

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);

(a) (b)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread. (b) Worker
thread.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Usage (of 4

Three ways to construct a server.

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model @ of3)

Process 1 Process 2 Process 3 Process
| '1' '1' i
User J
space
Thread Thread
K |
sﬁ::ee { Kernel Kernel

(a) (b)

Figure 2-11. (a) Three processes each with one thread. (b) One process with three
threads.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model o3

The first column lists some items shared by all threads in a
process. The second one lists some items private to each
thread.

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Classical Thread Model o3

Thread 2
1
Thread 1 Thread 3
A /
Thread 1's]__H H H - Thread 3's stack
stack v
Kernel

Figure 2-13. Each thread has its own stack.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

POSIX Threads 1 of3)

Some of the Pthreads function calls.

Thread call

Description

Pthread_create

Create a new thread

Pthread—exit

Terminate the calling thread

Pthread_join

Wait for a specific thread to exit

Pthread_vyield

Release the CPU to let another thread run

Pthread_attr—init

Create and initialize a thread's attribute structure

Pthread_attr_destroy

Remove a thread's attribute structure

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

POSIX Threads 2 of3)

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUMBER_OF_THREADS 10

void *print_hello_world(void *tid)

{
/* This function prints the thread’s identifier and then exits. */
printf("Hello World. Greetings from thread %d\n", tid);
pthread_exit(NULL);

}

int main(int argc, char *argv([])

{

/* The main program creates 10 threads and then exits. */
pthread_t threads[NUMBER_OF_THREADS];
int status, i;

for(i=0; i < NUMBER_OF_THREADS; i++) {
printf(*"Main here. Creating thread %d\n", i);

porrsmpueen 51818 = pthread create(&threadsli], NULL, print, .hello, world. (void *)i);

Figure 2-15. An example program using threads.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

POSIX Threads of3)

Ls - g L L Ll ¥ L al SR Tl = s wF La
od Hf(ﬂh{é‘f&“[‘ﬂﬁ":r{rf FHC L FEEF e T I S o ST e i R O I R R L L e

for(i=0; i <« NUMBER_OF_THREADS; i++) {
printf("Main here. Creating thread %d\n", i);
status = pthread_create(&threads[i], NULL, print_hello_world, (void *)i);

if (status 1= 0) {
printf("Oops. pthread_create returned error code %d\n", status);
exit(-1);

}
}
exit(NULL);

Figure 2-15. An example program using threads.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Implementing Threads in User Space

Process Thread Process Thread

_/ _/
=888) (898

Kernel |
space JI\ / Kernel Kernel E

% A 4
/ N\ / |
Run-time Thread Process Process Thread
system table table table table

Figure 2-16. (a) A user-level threads package. (b) A threads package managed by the
kernel.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Hybrid Implementations

Multiple user threads
on a kernel thread

_

>_ User
space

Kernel

Kernel
—— Kernel thread space

Figure 2-17. Multiplexing user-level threads onto kernel-level threads.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Pop-Up Threads

Pop-up thread
Process created to handle

) incoming message
\ Existing thread

3
¢

Incoming message J

MNetwork
(a) (b)

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the message
arrives. (b) After the message arrives.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Making Single-Threaded Code
Multithreaded (i of2)

Thread 1 Thread 2

é

Access (errno set)

- Time

|

Open (errno overwritten)

%

;

Errmo inspected

Figure 2-19. Conflicts between threads over the use of a global variable.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Making Single-Threaded Code
Multithreaded (2 ot 2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack S~

Thread 2's
" stack

Thread 1's
globals

Thread 2's
globals

Figure 2-20. Threads can have private global variables.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Race Conditions

Spooler

directory
4 abc out=4
6 prog.n
7 in=7

Process B

Figure 2-21. Two processes want to access shared memory at the same time.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Critical Regions of2)

Requirements to avoid race conditions:

1. No two processes may be simultaneously inside
their critical regions.

2. No assumptions may be made about speeds or the
number of CPUSs.

3. No process running outside its critical region may
block other processes.

4. No process should have to walit forever to enter its
critical region.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Critical Regions of 2)

A enters critical region

/ /

A leaves critical region

Process A | I
I | I I
I I I I
| | Battemptsto B enters : B leaves
I I enter critical : critical region : critical region
region / /
| | | |
| I/
PFDC'ESS B
[I J
! | v ! !
I 1 B blocked | l
T T, T3 T,

Figure 2-22. Mutual exclusion using critical regions.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting:
Strict Alternation

while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn != 1) /* loop */ ;
critical _region(); critical_region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
} }
(a) (b)

Figure 2-23. A proposed solution to the critical region problem. (a) Process 0. (b) Process
1. In both cases, be sure to note the semicolons terminating the while statements.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting:
Peterson’s Solution

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processas */

int turn; f* whose turn is it? =/

int interested[N]; /* all values initially 0 (FALSE) */

void enter_region(int process); f* processis 0 or1+/

{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; f* set flag +/

while (turn == process &#& interested[other] == TRUE) /* null statement #/ ;

}

void leave_region(int process) /* process: who is leaving */

interested[process] = FALSE; /* indicate departure from critical region */

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting: The
TSL Instruction (1 of2)

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?

JNE enter_region | if it was nonzero, lock was set, so loop
RET | return to caller; critical region entered

leave_region:
MOVE LOCK.,#0 | store a 0 in lock
RET | return to caller

Figure 2-25. Entering and leaving a critical region using the TSL instruction.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutual Exclusion with Busy Waiting: The
TSL Instruction ¢ of2)

enter_region:

MOVE REGISTER,#1 | put a 1 in the register

XCHG REGISTER,LOCK | swap the contents of the register and lock variable
CMP REGISTER,#0 | was lock zero?

JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave _region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Figure 2-26. Entering and leaving a critical region using the XCHG instruction

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Sleep and Wakeup: The Producer-
Consumer Problem o2

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)

{
int itemn;
while (TRUE) { /* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? */
}
}

void consumer(void)

-l"-.)-.p{-\,h{\f‘-\f N N LW LY ot N AN N VN N N o A Y BTN e N N R T NP X Y O LSV N T SN NN O N N T AP L L N T N Y e Y L

Figure 2-27. The producer-consumer problem with a fatal race condition.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Sleep and Wakeup: The Producer-
Consumer Problem (o2

CONS LSS (Gl e Ak A DL SUI AN ! o b S WA DOV BH Iy 1 o 0o T f bl gt

}
}
void consumer(void)
{
int item;
while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_item(); /* take item out of buffer */
count = count — 1; /* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? */
consume_item(item); /* print item */
}
}

Figure 2-27. The producer-consumer problem with a fatal race condition.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Semaphores (1 of 2)

#define N 100 /* number of slots in the buffer */

typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)

{ . .
int item;
while (TRUE) { /* TRUE is the constant 1 */
item = produce_item(); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */
}
}

k fwdjﬁ‘ﬂpwwrﬂiwﬂ} T e T T AT S o g R R R g P L S TOSr A N N |

Figure 2-28. The producer-consumer problem using semaphores.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Semaphores (2 of 2)

T p &Rl T T i ncrement count of full slofs ¥
}
}
void consumer(void)
{
int item;
while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove_item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(item); /* do something with the item */
}
}

Figure 2-28. The producer-consumer problem using semaphores.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_vyield | mutex is busy; schedule another thread
JMP mutex_lock | try again

ok: RET | return to caller; critical region entered

mutex_unlock:
MOVE MUTEX, #0 | store a 0 in mutex
RET | return to caller

Figure 2-29. Implementation of mutex_lock and mutex_unlock.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads (1 of5)

Some of the Pthreads calls relating to mutexes.

Thread Call

Description

Pthread _mutex

Create a mutex

Pthread _mutex

Destroy an existing mutex

Pthread _mutex

Acquire a lock or block

Pthread mutex

Acquire a lock or fall

Pthread mutex

Release a lock

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads ¢ of5)

Some of the Pthreads calls relating to condition variables.

Thread Call

Description

Pthread_cond_init

Create a mutex

Pthread cond_destroy

Destroy an existing mutex

Pthread cond_wait

Acquire a lock or block

Pthread cond_signal

Acquire a lock or fall

Pthread cond_broadcast | Release a lock

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads zofs)

#include =stdio.h=
#include <pthread.h=

#define MAX 1000000000 /* how many numbers to produce */
pthread_mutex_t the_mutex;

pthread_cond_t condc, condp; /* used for signaling */

int buffer = 0; /* buffer used between producer and consumer */
void *producer(void *ptr) /* produce data */

{ intQ;

for (i= 1: | <= MAX; i++) {
pthread_mutex_lock(&the_mutex); /* get exclusive access to buffer */
while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);
buffer = i; /* put item in buffer */
pthread_cond_signal(&condc); /* wake up consumer */
pthread_mutex_unlock(&the_mutex); /* release access to buffer */

}
pthread_exit(0):
}

PR el | s vt AT v iy i Ve W N P o o S R 8T r iy a " v o s s EO SR N N N R WL ST Y SR AN ST

Figure 2-32. Using threads to solve the producer-consumer problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads ¢ of5)

Rl A A e e A A e
ptiread_exit(0);

void *consumer(void *ptr) /* consume data */
{ int I;
for(i=1;1 == MAX; i++) {
pthread_mutex_lock(&the_mutex); /* get exclusive access to buffer */

while (buffer ==0) pthread_cond_wait(&condc, &the_mutex);
buffer = 0; /* take item out of buffer */

pthread_cond_signal(&condp); /* wake up producer */
pthread_mutex_unlock(&the_mutex); /* release access to buffer */

}
pthread_exit(0);

}

int main(int arge, char **argv
Fon gt o a0 AT e AT p i g e e PR e g Bt b e A e R e

Figure 2-32. Using threads to solve the producer-consumer problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Mutexes in Pthreads s of5)

r'“fﬂ'ﬂ"r"ﬁm&h’_ﬁhf{ﬂ}rf“f! R L e i 1o L T o

}

int main(int argc, char **argv)

{
pthread_t pro, con;
pthread_mutex_init{&the_mutex, 0);
pthread_cond_init(&condc, 0);
pthread_cond_init{&condp, 0);
pthread_create(&con, 0, consumer, 0);
pthread_create(&pro, 0, producer, 0);
pthread_join({pro, 0);
pthread_join{con, 0);
pthread_cond_destroy(&condc);
pthread_cond_destroy(&condp);
pthread_mutex_destroy(&the_mutex);

Figure 2-32. Using threads to solve the producer-consumer problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors (of 6)

monitor example
integer 1.
condition c:

procedure producer().

end:

procedure consumer().

end:
end monitor:

Figure 2-33. A monitor.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors 2 of 6)

monitor ProducerConsumer
condition filll, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(fill);

insert_item(item):

count == count + 1;

if count = 1 then signal{empty)
end;

function remove: infeger:
begin
if count = 0 then wait{empty);
remove = remove_item,
count == count — 1,
if count = N — 1 then signal{full)
end;

count = 0;

end monitor;
T i AT R ke AV AT Y e N T T Y L T W R e

Figure 2-34. An outline of the producer-consumer problem with monitors. Only one
monitor procedure at a time is active. The buffer has N slots.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors G of 6)

LA L ST A '..-..fd.r it P L P i Y e R LY
1}1 D{'E[llllf_pm HCer,

begin
while frue do
begin
item = produce_item,
ProducerConsumer.insert(item)
end
end;

III'D['E[II.I re CONSUIMET,

begin
while rrue do
begin
item = ProducerConsumern.remove;
consume_item(item)
end
end;

Figure 2-34. An outline of the producer-consumer problem with monitors. Only one
monitor procedure at a time is active. The buffer has N slots.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors of 6)

public class ProducerConsumer {
static final int N = 100; {/{ constant giving the buffer size
static producer p = new producer(); //instantiate a new producer thread
static consumer ¢ = new consumer(); // instantiate a new consumer thread
static our_monitor mon = new our_monitor(); [l instantiate a new monitor

public static void main(String args[]) {
p.start(); /I start the producer thread
c.start(); /I start the consumer thread

h

static class producer extends Thread {
public void run() {/ run method contains the thread code
int item;
while (true) { // producer loop
item = produce_item();
mon.insert(item);
}
}

private int produce_item() { ... } /I actually produce

h

static class consumer extends Thread {
B T N | i e B e N N il T i N e O N N L P N W A W

Figure 2-35. A solution to the producer-consumer problem in Java.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors G of 6)

= J'.-"},f e R R L L i b R e il L e e L S
private int produce_item() { ... } /I actually produce

}

static class consumer extends Thread {
public void run{) {run method contains the thread code
int item;
while (true) { // consumer loop
item = mon.remove();
consume_item (item);

}
J

private void consume _item(int item) { ... }// actually consume

)

static class our_monitor { // this is a monitor
private int buffer[] = new int[N];
private int count =0, lo =0, hi=0; // counters and indices

public synchronized void insert(int val) {
wry b Pt e P A o Sl nR P AP ey e e Al e frue

Figure 2-35. A solution to the producer-consumer problem in Java.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Monitors of 6)

i
if (count == N) go_to_sleep(); //if the buffer is full, go to sleep

buffer [hi] = val; // insert an item into the buffer

hi=(hi+ 1) % N; // slot to place next item in

count = count + 1; /{ one more item in the buffer now

if (count == 1) notify(); /I If consumer was sleeping, wake it up

}

public synchronized int remove() {
int val;
it (count == 0) go_to_sleep(); //if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer

lo=(lo+1)%N; /I slot to fetch next item from

count = count — 1; [l one few items in the buffer

if (count == N — 1) notify(); // if producer was sleeping, wake it up
return val;

]
private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {};}

}

Figure 2-35. A solution to the producer-consumer problem in Java.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Producer-Consumer Problem with
Message Passing (1 of2)

#define N 100 /* number of slots in the buffer */
void producer(void)
{
int itemn;
message m; /* message buffer */
while (TRUE) {
item = produce_item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */
}
}

void consumer(void)

LT TN T AT W S W N R R N N N N P N N T T N S N T N R N S SV Y s o T LN Y ST W R S W e N Y Y N e T Y N Y]

Figure 2-36. The producer-consumer problem with N messages.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Producer-Consumer Problem with
Message Passing (2 of2)

o et b p O E b poae gl B e b T e R O e g B g U A Tl P e O

send(consumer, &m); /* send item to consumer */
}
}
void consumer(void)
{
int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract_item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume_item(item); /* do something with the item */

Figure 2-36. The producer-consumer problem with N messages.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Barriers

Process

Barrier
Barrier
Barrier

© @ @ ®

TimMe e— TIME m— TIME ——

(a) (b) (c)

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. (b) All processes but
one blocked at the barrier. (c) When the last process arrives at the barrier, all of them are
let through.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Avoiding Locks: Read-Copy-Update (1 of2)

Adding a node:

B
o
][] [¢]
(a) Original tree (b) Initialize node X and connect (c) wWhen X is completely initialized,
E to X. Any readers in A and E connect X to A. Readers currently
are not affected. in E will have read the old version,

while readers in A will pick up the new
version of the tree.

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing a
branch-all without locks

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Avoiding Locks: Read-Copy-Update (2of2)

Removing nodes:

C D E D E C E
(d) Decouple B from A. Note that (e) Wait until we are sure that all (f) Now we can safely remove B and D
there may still be readers in B. All readers have left B and C. These
readers in B will see the old version nodes cannot be accessed by anymore.

of the tree, while all readers currently
in A will see the new version.

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing a
branch-all without locks

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Introduction to Scheduling Process
Behavior

(a) I — — —— |

/

Long CPU burst

Waiting for /O

Short CPU burst \
/ I 1 I
L1

(b) [L]] I]

n
5]

3
-
3

Time

Figure 2-39. Bursts of CPU usage alternate with periods of waiting for I/O. (a) A CPU-
bound process. (b) An I/O-bound process.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Categories of Scheduling Algorithms

1. Batch.
2. Interactive.

3. Real time.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling Algorithm Goals (1 0f2)

Some goals of the scheduling algorithm under different
circumstances.

* All systems

— Fairness - giving each process a fair share of the CP
U

— Policy enforcement - seeing that stated policy is
carried out

— Balance - keeping all parts of the system busy

* Batch systems
— Throughput - maximize jobs per hour

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling Algorithm Goals (2.f2)

— Turnaround time - minimize time between submission
and termination

— CPU utilization - keep the CPU busy all the time

* Interactive systems
— Response time - respond to requests quickly
— Proportionality - meet users' expectations

* Real-time systems
— Meeting deadlines - avoid losing data

— Predictability - avoid quality degradation in multimedia
systems

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling in Batch Systems

* First-Come First-Served
* Shortest Job First

* Shortest Remaining Time Next

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Shortest Job First

Figure 2-41. An example of shortest job first scheduling. (a) Running four jobs in the
original order. (b) Running them in shortest job first order.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling in Interactive Systems

* Round-Robin Scheduling
* Priority Scheduling

* Multiple Queues

* Shortest Process Next

* Guaranteed Scheduling
* Lottery Scheduling

* Fair-Share Scheduling

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Round-Robin Scheduling

Current Mext
process process
B F D G A
(a)
Current
process
F D G A B

(b)

Figure 2-42. Round-robin scheduling. (a) The list of runnable processes. (b) The list of
runnable processes after B uses up its quantum.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Priority Scheduling

Queue Runable processes
headers .

k]

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

Figure 2-43. A scheduling algorithm with four priority classes.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Scheduling in Real-Time Systems

* Time plays an essential role

* Categories
— Hard real time
— Soft real time
— Periodic or aperiodic

* Schedulable satisfies

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Scheduling @ of 2)

Process A Process B
Order in which l

threads run \

=)(59838

thread — = =

L1. Kernel picks a process

Possible: A1, A2 A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

(a)

Figure 2-44. (a) Possible scheduling of user-level threads with a 50-msec process
guantum and threads that run 5 msec per CPU burst.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Thread Scheduling (2 of 2)

Process A Process B

1 Kernel picks a thread E

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

(b)

Figure 2-44. (b) Possible scheduling of kernel-level threads with the same characteristics
as (a).

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (of s

Figure 2-45. Lunch time in the Philosophy Department.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (2 f5)

#define N 5 /* number of philosophers */

void philosopher(int i) /* i philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take_fork((i+1) % N); /* take right fork; % is modulo operator */
eaf(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

Figure 2-46. A nonsolution to the dining philosophers problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem of)

#define N 5 /* number of philosophers */
#define LEFT (i+N-1)%N /* number of i's left neighbor */
#define RIGHT (i+1)%N /* number of i's right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */
void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */
think(); /* philosopher is thinking */
take_forks(i); /* acquire two forks or block */
eat(); [* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */
}
}

ERTATA T s VIR CF S VT e TV AT SV S YT P S L VAN Yot WSS AR e Vn TeN AW LT

Figure 2-47. A solution to the dining philosophers problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem (ofs)

I B Horks ()T i bl bt 1orks badk o table kT

}
}
void take_forks(int i) /* iz philosopher number, from 0 to N—1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put_forks(i) /* iz philosopher number, from 0 to N—1 */

T N ¥ TN ey N T N e LAY AV N s LT N E Y N o YT N W N SN GV VW Y YN N ST W Ly sV o

Figure 2-47. A solution to the dining philosophers problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Dining Philosophers Problem s of s

T EE TR N AL OO A A e Al I P A g J ARG I LD d B A e el o FEFO

}
void put_forks(i) /* i: philosopher number, from 0 to N—1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); [* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N—1 */
{
if (state[i] == HUNGRY && state[LEFT] |= EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&sfi]);
}
}

Figure 2-47. A solution to the dining philosophers problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Readers and Writers Problem ot 2

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /* controls access to 'rc’ */

semaphore db = 1; /* controls access to the database */

int rc = 0; /* # of processes reading or wanting to */

void reader(void)

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to rc’ */
rc=rc+1; /* one reader more now */
if (rc == 1) down(&db); /= if this is the first reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
read_data_base(); /* access the data */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc—1; /* one reader fewer now */
if (rc == 0) up(&db); /= if this is the last reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
use_data_read(); /* noncritical region */

}

NVOULWIBEIINCIGN 1000 s p0- 0 o por sy i858 o 00 o3 g o s o 8B P o p

Figure 2-48. A solution to the readers and writers problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The Readers and Writers Problem o2

R T i o b L e L (“-Ff & I“v,{.n-f-.r-i'J T R S A
use_data_read(); /* noncritical region */

void writer(void)

{
while (TRUE) { /* repeat forever */
think_up_data(); /* noncritical region */
down(&db); /* get exclusive access */
write_data_base(); /* update the data */
up(&db); /* release exclusive access */
}
}

Figure 2-48. A solution to the readers and writers problem.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these

restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials,

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

	Modern Operating Systems
	The Process Model (1 of 3)
	The Process Model (2 of 3)
	The Process Model (3 of 3)
	Process Creation
	Process Termination
	Process States (1 of 3)
	Process States (2 of 3)
	Process States (3 of 3)
	Implementation of Processes (1 of 2)
	Implementation of Processes (2 of 2)
	Modeling Multiprogramming
	Thread Usage (1 of 4)
	Thread Usage (2 of 4)
	Thread Usage (3 of 4)
	Thread Usage (4 of 4)
	The Classical Thread Model (1 of 3)
	The Classical Thread Model (2 of 3)
	The Classical Thread Model (3 of 3)
	P O S I X Threads (1 of 3)
	P O S I X Threads (2 of 3)
	P O S I X Threads (3 of 3)
	Implementing Threads in User Space
	Hybrid Implementations
	Pop-Up Threads
	Making Single-Threaded Code Multithreaded (1 of 2)
	Making Single-Threaded Code Multithreaded (2 of 2)
	Race Conditions
	Critical Regions (1 of 2)
	Critical Regions (2 of 2)
	Mutual Exclusion with Busy Waiting: Strict Alternation
	Mutual Exclusion with Busy Waiting: Peterson’s Solution
	Mutual Exclusion with Busy Waiting: The TSL Instruction (1 of 2
	Mutual Exclusion with Busy Waiting: The TSL Instruction (2 of 2
	Sleep and Wakeup: The Producer-Consumer Problem (1 of 2)
	Sleep and Wakeup: The Producer-Consumer Problem (2 of 2)
	Semaphores (1 of 2)
	Semaphores (2 of 2)
	Mutexes
	Mutexes in Pthreads (1 of 5)
	Mutexes in Pthreads (2 of 5)
	Mutexes in Pthreads (3 of 5)
	Mutexes in Pthreads (4 of 5)
	Mutexes in Pthreads (5 of 5)
	Monitors (1 of 6)
	Monitors (2 of 6)
	Monitors (3 of 6)
	Monitors (4 of 6)
	Monitors (5 of 6)
	Monitors (6 of 6)
	The Producer-Consumer Problem with Message Passing (1 of 2)
	The Producer-Consumer Problem with Message Passing (2 of 2)
	Barriers
	Avoiding Locks: Read-Copy-Update (1 of 2)
	Avoiding Locks: Read-Copy-Update (2 of 2)
	Introduction to Scheduling Process Behavior
	Categories of Scheduling Algorithms
	Scheduling Algorithm Goals (1 of 2)
	Scheduling Algorithm Goals (2 of 2)
	Scheduling in Batch Systems
	Shortest Job First
	Scheduling in Interactive Systems
	Round-Robin Scheduling
	Priority Scheduling
	Scheduling in Real-Time Systems
	Thread Scheduling (1 of 2)
	Thread Scheduling (2 of 2)
	The Dining Philosophers Problem (1 of 5)
	The Dining Philosophers Problem (2 of 5)
	The Dining Philosophers Problem (3 of 5)
	The Dining Philosophers Problem (4 of 5)
	The Dining Philosophers Problem (5 of 5)
	The Readers and Writers Problem (1 of 2)
	The Readers and Writers Problem (2 of 2)
	Copyright

