Modern Operating Systems
Fourth Edition

TANENBAUM MODERN
BOS OPERATING

SYSTEMS

hhhhh AT Chapter 5
| g SR, T Input /Output

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/0 Devices (1 of2)

* Block devices
— Stores information In fixed-size blocks
— Transfers are in units of entire blocks

* Character devices

— Delivers or accepts stream of characters, without
regard to block structure

— Not addressable, does not have any seek operation

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/0 Devices @ of2)

Some typical device, network, and bus data rates.

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Scanner at 300 dpi 1 MB/sec
Digital camcorder 9.5 MB/sec
4x Blu-ray disc 18 MB/sec
802.1 In Wireless 37.5 MB/sec
USB 2.0 60 MB/sec
FireWire 800 100 MB/sec
Gigabit Ethernet 125 MB/sec
SATA 3 disk drive 600 MB/sec
USB 9.0 625 MB/sec
SCSI Ultra 5 bus 640 MB/sec
Single-lane PCle 3.0 bus 985 MB/sec
Thunderbolt 2 bus 2.5 GB/sec
SONET OC-768 network 5 GB/sec

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory-Mapped 1I/0 @ of2)

Two address

DxFFEF.-.

Memory

I/O ports

/

One address space Two address spaces

Figure 5-2. (a) Separate I/O and memory space. (b) Memory-mapped 1/O. (c) Hybrid.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Memory-Mapped 1I/0 @ of2)

CPU reads and writes of memory
go over this high-bandwidth bus

CPU Memory I/O CPU Memory I/O

I | | | | I | s ||

| . |
\ ‘ N This memory port is
Bus to allow I/O devices

access to memory

All addresses (memory
and I/O) go here

(a) (b)

Figure 5-3. (a) A single-bus architecture. (b) A dual-bus memory architecture.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Direct Memory Access

@‘.ﬂ— Drive

1.CPU
programs DMA Disk Main
CPU the DMA controller controller memory
controller P Buffer
]
d S
[Control | | 4-Ack 4
| — 1
A
4 | | 4
Interrupt when 2. DMA requests
done transfer to memory 3. Data transferred
-—Bus

Figure 5-4. Operation of a DMA transfer.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Interrupts Revisited

Interrupt 1. Device is finished

CPU 3. CPU acks controller

interrupt Disk

L L

2. Controller
LY Issues

2\ Keyboard

Printer

;I] D;
5

Bus

Figure 5-5. How an interrupt happens. The connections between the devices and the
interrupt controller actually use interrupt lines on the bus rather than dedicated wires.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Precise Interrupt

Four properties of a precise interrupt:
1. The PC saved in a known place.

2. All instructions before that pointed to by PC have
fully executed.

3. No instruction beyond that pointed to by PC has
been executed.

4. Execution state of instruction pointed to by PC is
Known.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Precise vs. Imprecise

332

Not executed 323 Mot executed 258
Not executed 10% executed

324 324

Not executed | og [eesiEa) o
Not executed 35% executed

316 PC— S o 316

308

304
300

308

304
300

(b)

Figure 5-6. (a) A precise interrupt. (b) An imprecise interrupt.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Goals of the I/0 Software

Issues:
* Device independence

* Uniform naming

Error handling

* Buffering.

Synchronous versus asynchronous

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Programmed 1I/0 (1 0f2)

String to
User | be printed
Space l' Printed Printed
page page
ABCD
EFGH 'l' l
[Next = & Next— i
Kernel Y Y
space iy ABCD ABCD
EFGH EFGH

Figure 5-7. Steps in printing a string.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Programmed 1I/0 2of2)

copy_from_user(buffer, p, count); /* p is the kernel buffer */

for (i =0; i < count; i++) { /* loop on every character */
while (*printer_status_reg != READY) ; /* loop until ready */
printer_data_register = pli]; / output one character */

}

return_to_user();

Figure 5-8. Writing a string to the printer using programmed I/O.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Interrupt-Driven 1I/0

copy_from_user(buffer, p, count);
enable_interrupts();

while (*printer_status_reg != READY) ;
*printer_data_register = p[0];
scheduler();

(a)

if (count == 0) {
unblock_user();
} else {
*printer_data_register = p[i];
count = count — 1;
=i+ 1;
}
acknowledge_interrupt();
return_from_interrupt();

(b)

Figure 5-9. Writing a string to the printer using interrupt-driven I/O. (a) Code executed at
the time the print system call is made. (b) Interrupt service procedure for the printer.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/0 Using DMA

copy _from_user(buffer, p, count); acknowledge_interrupt();

set_up_DMA_controller(); unblock_user();

scheduler(); return_from_interrupt();
(a) (b)

Figure 5-10. Printing a string using DMA. (a) Code executed when the print system call is
made. (b) Interrupt service procedure.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

I/0 Software Layers

User-level /O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Figure 5-11. Layers of the 1/O software system.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Interrupt Handlers .2

Typical steps after hardware interrupt completes:

1.

w

Save registers (including the PSW) not already
saved by interrupt hardware.

Set up context for interrupt service procedure.
Set up a stack for the interrupt service procedure.

Acknowledge interrupt controller. If no centralized
Interrupt controller, reenable interrupts.

Copy registers from where saved to process table.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Interrupt Handlers (2 of2)

Typical steps after hardware interrupt completes:

6. Run interrupt service procedure. Extract information
from interrupting device controller’s registers.

7. Choose which process to run next.

8. Set up the MMU context for process to run next.
9. Load new process’ registers, including its PSW.
10.Start running the new process.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Device Drivers

User process

User
space

4
User

program

Kernel
space

Rest of the operating system

Printer Camcorder CD-ROM
driver driver driver

Hardware

Devices

¥ Y ¥

Printer controller | |Camcorder comrolleri |CD—ROM controllerl

Figure 5-12. Logical positioning of device drivers. In reality all communication between
drivers and device controllers goes over the bus.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Device-Independent I/O Software

A typical page table entry.

Uniform interfacing for device drivers

Buffering

Error reporting

Allocating and releasing dedicated devices

Providing a device-independent block size

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Uniform Interfacing for Device Drivers

Operating system Operating system
SATA disk driver USB disk driver SCSI disk driver SATA disk driver USB disk driver SCSI disk driver
(a) (b)

Figure 5-14. (a) Without a standard driver interface. (b) With a standard driver interface.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Buffering (ot 2)

User process
y Y
ser
space A I?I
Kernel
space

g

£
£ | | e

EJ * r)
1 } 3;
4:-:::_ ‘4‘_-/'-::. ‘4_/‘:-::._ e
Modem Modem Modem Modem
(a) (b) (c) (d)

Figure 5-15. (a) Unbuffered input. (b) Buffering in user space. (c) Buffering in the kernel
followed by copying to user space. (d) Double buffering in the kernel.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Buffering (ot 2)

!User process

MNetwork
e
controller |

(¥
User
space @ @
5
Kernel [T1
space <| 1 —
| F
2]
Y
1
[3

Network o

Figure 5-16. Networking may involve many copies of a packet.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

User-Space 1/0 Software

e
Layer / reply I/O functions
/O User processes # Make /O call; format I/O; spooling
request _**I'
Device-independent ~ ~ - . -

| coftware } Naming, protection, blocking, buffering, allocation

|
Device drivers \ Set up device registers; check status
|
Interrupt handlers \ Wake up driver when /O completed
| I
Hardware Perform /O operation

Figure 5-17. Layers of the 1/O system and the main functions of each layer.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Magnetic Disks (1 of 2)

Disk parameters for the original IBM PC 360-KB floppy disk and a
Western Digital WD 3000 HLFS (“Velociraptor”) hard disk.

Parameter IBM 360-KB floppy disk WD 3000 HLFS hard disk
Number of cylinders 40 36481
Tracks per cylinder 2 255

Sectors per track 9 63 (avg)
Sectors per disk 720 586,072,368
Bytes per sector 512 512

Disk capacity 360 KB 300 GB
Seek time (adjacent 6 msec 0.7 msec
cylinders)

Seek time (average case) 77 msec 4.2 msec
Rotation time 200 msec 6 msec
Time to transfer 1 sector 22 msec 1.4 usec

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Magnetic Disks (2 of 2)

Figure 5-19. (a) Physical geometry of a disk with two zones. (b) A possible virtual
geometry for this disk.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

RAID @ of2)

AN T
C O
StripQ | | Strip1 | | Strip2 | | Strip 3
e A N] —
(a) | Strip& | | Sirip5 | | Strip® | | Strip 7 | RAID level 0

e e e
Strip8 | | Strip 9 | |Strip 10| | Strip 11
R T

— TN TN S Y
StripO | | Strip1 | | Stip2 | | Strip3 | | Stip 0 | | Strip 1 | | Strip 2
e e o] —oo [~——o [~—o [~——1
(b) | Strip& | | Strip5 | | Strip6 | | Strip7 | | Strip4 | | Sirip 5 | | Strip &
e A e A A A A —]

Strip8 | | Strip 9 | |Strip 10| |Strip 11| | Stip 8 | | Strip @ | | Strip 10
R I

RAID
level 1

(&(2(20

COC D

Bit 1 Bit2 Bit3 Bit4 Bits Bit& Bit 7
—

] RAID level 2

id) RAID level 3

Figure 5-20. RAID levels 0 through 3. Backup and parity drives are shown shaded.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

RAID ot 2

T
—]
Strip 3
—
Strip 7
R

Strip 11
N

(e RAID level 4

U CLEEC

e e
C OO DD
Strip0 | [Strip1 | | Strip2 | | Strip 3 PO-3
M o e [—o—]
Strip£ | | Sirip5 | | Sirip© P4-7 Strip 7
e, B R) U) S
{f) | Strip8 | | Strip9 | | P8-11 | | Strip 10| |Strip 11[RAID level 5

e e e] —
Strip 12 | P12-15| | Sirip 13| | Strip 14| | Sirip 15
e]]
P16-19 | | Sirip 16| |Strip 17 | Strip 18| [Sirip 19
— e e

C D

Strip0 | | Strip 1
T

CEE

- ID level
@ siipa % P35 || P35 RADlevel &

P 9-11 P*9-11] | Strip 9 M

(

(g)

20
EEEED (

Figure 5-20. RAID levels 4 through 6. Backup and parity drives are shown shaded.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disk Formatting (1 of 3)

A disk sector.

Preamble

Data

ECC

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disk Formatting (2 of 3)

Figure 5-22. An illustration of cylinder skew.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disk Formatting (3 of 3)

Figure 5-23. (a) No interleaving. (b) Single interleaving. (c) Double interleaving.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disk Arm Scheduling Algorithms (i of 3)

Factors of a disk block read/write:
1. Seek time (the time to move the arm to the proper
cylinder).
2. Rotational delay (how long for the proper sector to
come under the head).

3. Actual data transfer time.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disk Arm Scheduling Algorithms (2 of 3)

Initial Pending
position requests

\"1/\
X|X X x| [x

0 5 10 15 20 25 30 35 Cylinder

g Sequence of seeks

—-—Time

Figure 5-24. Shortest Seek First (SSF) disk scheduling algorithm.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Disk Arm Scheduling Algorithms @ of 3)

Initial
position

X X XX X Xl X
0 5 10 15 20 25 30 35 Cylinder

\\Siql.lenﬂe of seeks

- Time

—

Figure 5-25. The elevator algorithm for scheduling disk requests.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Error Handling

Figure 5-26. (a) A disk track with a bad sector. (b) Substituting a spare for the bad sector.
(c) Shifting all the sectors to bypass the bad one.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Stable Storage (i of2)

* Uses pair of identical disks
* Either can be read to get same results

* Operations defined to accomplish this:
1. Stable Writes
2. Stable Reads
3. Crash recovery

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Stable Storage (2 f2)

ECC
Disk °'°\ Disk Disk Disk Disk
1 2 \ 1 2 1 2 1 2 1 2
7 7
Old Old Z Cid MNew| |OId New é New| [New
7 %
f] f f t
Crash Crash Crash Crash Crash

(a) (b) (c) (d) (e)

Figure 5-27. Analysis of the influence of crashes on stable writes.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Clock Hardware

Crystal oscillator

Counter is decremented at each pulse

Holding register is used to load the counter

Figure 5-28. A programmable clock.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Clock Software (o3

Typical duties of a clock driver:

1.
2.

o 0 KW

Maintaining the time of day.

Preventing processes from running longer than
allowed.

Accounting for CPU usage.

Handling alarm system call from user processes.
Providing watchdog timers for parts of system itself.
Profiling, monitoring, statistics gathering.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Clock Software o3

- 64 bits - ——— 32 bits — ——— 32 bits —
Time of day in ticks P p Counter in ticks
s s
Time of day Number of ticks
in seconds in current second A

System boot time
in seconds

(a) (b) (©)

Figure 5-29. Three ways to maintain the time of day.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Clock Software o3

Current time Next signal

Clock 4200 3
header

— |—>-4 |—>6| > {o] —]1]x

Figure 5-30. Simulating multiple timers with a single clock.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Soft Timers

Soft timers stand or fall with the rate at which kernel entries
are made for other reasons. These reasons include:

System calls.

TLB misses.

Page faults.

/O interrupts.

The CPU going idle.

a bk wWhPE

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Keyboard Software

Characters that are handled specially in canonical mode.

Character | POSIX name Comment

CTRL-H ERASE Backspace one character
CTRL-U KILL Erase entire line being typed
CTRL-V LNEXT Interpret next character literally
CTRL-S STOP Stop output

CTRL-Q START Start output

DEL INTR Interrupt process

CTRL-\ QUIT Force core dump

CTRL-D EOF End of file

CTRL-M CR Carriage return (unchangeable)
CTRL-J NL Linefeed (unchangeable)

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Output Software — Text Windows (1 o 2)

The ANSI escape sequences accepted by the terminal
driver on output. ESC denotes the ASCII escape character
(0x1B), and n, m, and s are optional numeric parameters.

Escape Sequence | Meaning

ESC[nA Move up n lines

ESC[nB Move down n lines

ESC[nC Move right n spaces

ESC[nD Move left n spaces

ESC [m; nH Move cursor to (m,n)

ESC [s J Clear screen from cursor (0 to end, 1 1from start, 2 all)
ESC[s K Clear line from cursor (0 to end, 1 1from start, 2 all)

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Output Software — Text Windows (2o 2)

The ANSI escape sequences accepted by the terminal
driver on output. ESC denotes the ASCII escape character
(0x1B), and n, m, and s are optional numeric parameters.

Escape Sequence | Meaning

ESC[nL Insert n lines at cursor

ESC[nM Delete n lines at cursor

ESC[nP Delete n chars at cursor

ESC[n @ Insert n chars at cursor

ESC[nm Enable rendition n (O=normal, 4=bold, 5=blinking, 7=reverse)
ESCM Scroll the screen backward if the cursor is on the top line

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The X Window System (i of 4)

Remote host

B Window Application
manager program
Motif
User Intrinsics
space
Alib
X client X server
s LIMNIX UMNIX
space 9
Hardware Hardware
K X protocol J

Metwork

Figure 5-33. Clients and servers in the M.I.T. X Window System.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The X Window System (2 of)

Types of messages between client and server:

1.

2.
3.
4.

Drawing commands from program to workstation.
Replies by workstation to program queries.
Keyboard, mouse, and other event announcements.
Error messages.

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The X Window System ¢ of 4)

#include <X11/Xlib.h>
#include <X11/Xutil.h>

main(int argc, char *argv[])

{
Display disp; /* server identifier */
Window win; /* window identifier */
GC gc; /* graphic context identifier */
XEvent event; /* storage for one event */

int running = 1;

disp = XOpenDisplay("display_name"); /* connect to the X server */
win = XCreateSimpleWindow(disp, ...); /* allocate memory for new window */
XSetStandardProperties(disp, ...); /* announces window to window mgr */
gc = XCreateGC(disp, win, 0, 0); /* create graphic context */
XSelectlnput(disp, win, ButtonPressMask | KeyPressMask | ExposureMask);
XMapRaised(disp, win); /* display window; send Expose event */

while (running) {
XNextEvent(disp, &event); /* get next event */
switch (event.type) {

T Y i A T A T ISt R S s I T W Ay v

Figure 5-34. A skeleton of an X Window application program.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

The X Window System (of 4)

HES T Al S o S S Dl pA e A e iy T o TS A A T st f e el T AN A e W 0

XSetStandardProperties(disp, ...); /* announces window to window mgr */
gc = XCreateGC(disp, win, 0, 0); /* create graphic context */
XSelectlnput(disp, win, ButtonPressMask | KeyPressMask | ExposureMask);
XMapRaised(disp, win); /* display window; send Expose event */

while (running) {

XNextEvent(disp, &event); /* get next event */
switch (event.type) {
case Expose: ..., break; /* repaint window */
case ButtonPress: ...: break: /* process mouse click */
case Keypress: ...; break; /* process keyboard input */
}
}
XFreeGC(disp, gc); /* release graphic context */
XDestroyWindow(disp, win); [* deallocate window's memory space */
XCloseDisplay(disp); /* tear down network connection */

Figure 5-34. A skeleton of an X Window application program.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Graphical User Interfaces o 4)

(0, 0) (1023, 0)

\

||
(200, 100) = e e

Menu bar —» File =) View™) Tools T} m) _Help 7}

Too'bar—*%zfg@oﬁ)@E A 4

=1

o
— = Thumb

Client area
—g= Scroll bar
Window ==
[T¥] 1
;‘l o . |
(0, 767) (1023, 767)

Figure 5-35. A sample window located at (200, 100) on an XGA display.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Graphical User Interfaces (of4)

#include <windows.h=

int WINAPI WinMain(HINSTANCE h, HINSTANCE, hprev, char *szCmd, int iCmdShow)

{
WNDCLASS wndclass; /* class object for this window */
MSG msg; /* incoming messages are stored here */
HWND hwnd; /* handle (pointer) to the window object */

/* Initialize wndclass */

wndclass.lpfnWndProc = WndProc; /* tells which procedure to call */
wndclass.lpszClassName = "Program name"; /* Text for title bar */
wndclass.hlcon = Loadlcon(NULL, IDI_APPLICATION); /* load program icon */
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW); /* load mouse cursor */

RegisterClass(&wndclass); /* tell Windows about wndclass */

hwnd = CreateWindow (...) /* allocate storage for the window */

ShowWindow(hwnd, iCmdShow); /* display the window on the screen */

UpdateWindow(hwnd); /* tell the window to paint itself */

while (GetMessage(&msg, NULL, 0, 0)) { /* get message from queue */
TranslateMessage(&msg); /* translate the message */

B e N L LT o o SR T P U RPN P SO R

Figure 5-36. A skeleton of a Windows main program.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Graphical User Interfaces of4)

IS SRS VAT, G A A SO s 7 TS DI (116 eGSO e SIS A7 7 177 s

UpdateWindow(hwnd); /* tell the window to paint itself */
while (GetMessage(&msg, NULL, 0, 0)) { /* get message from queue */
TranslateMessage(&msg); /* translate the message */
DispatchMessage(&msg); /* send msg to the appropriate procedure */
}
return(msg.wParam);
}
long CALLBACK WndProc(HWND hwnd, UINT message, UINT wParam, long |[Param)
{
/* Declarations go here. */
switch (message) {
case WM_CREATE: ...; return...; /* create window */
case WM_PAINT: ..; return...; /* repaint contents of window */
case WM_DESTROY: ..; return...; /* destroy window */
}
return(DefWindowProc(hwnd, message, wParam, IParam)); /* default */
}

Figure 5-36. A skeleton of a Windows main program.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Graphical User Interfaces of4)

0 1 2 3 4 5 6 7 8

-~ @ »; k= W N = O

Figure 5-37. An example rectangle drawn using Rectangle. Each box represents one
pixel.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Bitmaps

L=J
ma
o
=1
=]
(=]
ma
Y
(=]
(=]

1
m:
LLLLL]L

LI

1 1

| 1
L1 Ll
=R O =)
I

1
||
I

LI
1 1
| L1
1 1

= T R e =}

(]D 246 8 .;:.G 246 8
Window 1 / i Window 1/ i:
6 6
8 T
Window 2 £ Window 2 >
(a) (b)

Figure 5-38. Copying bitmaps using BitBlt. (a) Before. (b) After.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Fonts

2 gbcdefgh

- abcdefgh

-abcdefgh

Figure 5-39. Some examples of character outlines at different point sizes.

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Hardware Issues

Power consumption of various parts of a notebook

computer.

Device Li et al. (1994) Lorch and Smith (1998)
Display 68% 39%

CPU 12% 18%

Hard Disk 20% 12%

Modem 6%

Sound 2%

Memory 0.5% 1%

Other 22%

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Operating System Issues: The Display

Window 1

L
I I
I I
e e = — —
| |
____L____J___ Window 2 ||
| |

I ———————
Window 1 :

p— —_—— b ——
| I .

L} ——— — 4— —] Window 2
| |
| |

l—'\r"_‘

Zone

Figure 5-41. The use of zones for backlighting the display. (a) When window 2 is selected
it is not moved. (b) When window 1 is selected, it moves to reduce the number of zones

illuminated.

@ Pearson

Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Operating System Issues: The CPU

1.00 1.00

0.75 0.75
% 0.50 % 0.50 |-

o
0.25 0.25
0 0 |
0 T/2 T 0 T/2 ¥
TiMe —— Time —a

(a) (b)

Figure 5-42. (a) Running at full clock speed. (b) Cutting voltage by two cuts clock speed
by two and power consumption by four

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these

restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials,

@Pearson Copyright © 2014 Pearson Education, Inc. All Rights Reserved

	Modern Operating Systems
	I/O Devices (1 of 2)
	I/O Devices (2 of 2)
	Memory-Mapped I/O (1 of 2)
	Memory-Mapped I/O (2 of 2)
	Direct Memory Access
	Interrupts Revisited
	Precise Interrupt
	Precise vs. Imprecise
	Goals of the I/O Software
	Programmed I/O (1 of 2)
	Programmed I/O (2 of 2)
	Interrupt-Driven I/O
	I/O Using D M A
	I/O Software Layers
	Interrupt Handlers (1 of 2)
	Interrupt Handlers (2 of 2)
	Device Drivers
	Device-Independent I/O Software
	Uniform Interfacing for Device Drivers
	Buffering (1 of 2)
	Buffering (2 of 2)
	User-Space I/O Software
	Magnetic Disks (1 of 2)
	Magnetic Disks (2 of 2)
	R A I D (1 of 2)
	R A I D (2 of 2)
	Disk Formatting (1 of 3)
	Disk Formatting (2 of 3)
	Disk Formatting (3 of 3)
	Disk Arm Scheduling Algorithms (1 of 3)
	Disk Arm Scheduling Algorithms (2 of 3)
	Disk Arm Scheduling Algorithms (3 of 3)
	Error Handling
	Stable Storage (1 of 2)
	Stable Storage (2 of 2)
	Clock Hardware
	Clock Software (1 of 3)
	Clock Software (2 of 3)
	Clock Software (3 of 3)
	Soft Timers
	Keyboard Software
	Output Software – Text Windows (1 of 2)
	Output Software – Text Windows (2 of 2)
	The X Window System (1 of 4)
	The X Window System (2 of 4)
	The X Window System (3 of 4)
	The X Window System (4 of 4)
	Graphical User Interfaces (1 of 4)
	Graphical User Interfaces (2 of 4)
	Graphical User Interfaces (3 of 4)
	Graphical User Interfaces (4 of 4)
	Bitmaps
	Fonts
	Hardware Issues
	Operating System Issues: The Display
	Operating System Issues: The C P U
	Copyright

